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A HYBRID SETARX MODEL FOR SPIKES 
IN TIGHT ELECTRICITY MARKETS 

The paper discusses a simple looking but highly nonlinear regime-switching, self-excited thresh-
old model for hourly electricity prices in continuous and discrete time. The regime structure of the 
model is linked to organizational features of the market. In continuous time, the model can include 
spikes without using jumps, by defining stochastic orbits. In passing from continuous time to discrete 
time, the stochastic orbits survive discretization and can be identified again as spikes. A calibration 
technique suitable for the discrete version of this model, which does not need deseasonalization or 
spike filtering, is developed, tested and applied to market data. The discussion of the properties of the 
model uses phase-space analysis, an approach uncommon in econometrics. 
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1. Introduction 

All physical power markets are built around the necessity of the timely and reli-
able physical delivery of electricity from producers to users, at socially best prices. 
Associated with physical markets, markets of purely financial derivatives written on 
the underlying electricity price processes help to manage price or quantity risks. Con-
sequently, good mathematical models for the dynamics of electricity prices are neces-
sary for the proper management of social welfare in the electricity industry. Each 
power market has its own idiosyncratic organizational characteristics, but all power 
markets show a common set of “stylized facts” in the dynamic features of their elec-
tricity prices, the most striking “fact” being the presence of many price spikes. These 
facts are very different from those found in the much more studied and much more 
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liquid stock or bond markets. But, as usually happens in research, first models of elec-
tricity prices were developed from models of stock or bond markets [14], and in con-
tinuous time t this means, for example, geometric Brownian motion or continuous 
AR(1) (Ornstein–Uhlenbeck) stochastic differential equations. Unfortunately, these 
off-shelf models cannot reproduce typical features of power markets like seasonal 
random spiking. Moreover, standard stock or bond price models are designed and used 
to describe fundamental markets, i.e. markets that are not explicitly driven by exoge-
nous processes like demand or volume. On the contrary, in power markets, in the 
presence of tight market conditions, due to capacity constraints or power grid limita-
tions, exogenous electricity demand can strongly affect the price process. Here the 
word “tight” is used according to the commodity trading slang, in which it refers to 
a physical market condition where supply is constrained in the face of rising demand, 
resulting in higher prices for the commodity [37]. 

This paper will explore a nonlinear model of electricity prices that in certain con-
ditions can achieve highly nonlinear effects, a model previously sketched in [30]. This 
model can incorporate the effect of time-varying demand on a market which can find 
itself in smooth or tight conditions with regard to demand levels. The model is essen-
tially a simplified threshold autoregression, but includes a special parametric sector 
with unusual and useful features. Specifically, its nonlinearity will be shown to be 
essential in generating many of the stylized facts of electricity prices phenomenology. 
The model will be studied in both continuous and discrete time. In continuous time, 
spikes will be generated as continuous price processes, i.e. not using jumps, then in 
a different way from jump-diffusion models. It will be shown that the ability of the 
continuous time model to support spikes survives discretization. A tool not common in 
econometric modelling, phase-space analysis, will be used to illustrate these points. In 
both continuous and discrete time, it will be shown how nonlinearity can relate sto-
chastic exogenous periodic demand to seasonal spiking and multiple mean reversion 
mechanisms, and how all of this can be interpreted in microeconomic terms. A cali-
bration technique will be developed (and tested) to estimate the model using hourly 
data in discrete time. The focus of the paper is not on how well this model estimates 
the specific data set used as an example, but on how rich are the dynamics supported 
by the model and the range of its possibilities. In this sense, this paper is not about 
applied econometrics, but about investigating a new econometric tool in itself. 

After the Introduction, in Section 2 some typical electricity price phenomenology 
will be recalled, and the link of seasonality in demand with seasonality and spiking in 
prices is analyzed, discussing data and market regimes. Section 3 will recall some 
information about discrete time and continuous time regime-switching threshold mod-
els, contrasting them with continuous time discontinuous price jump-diffusion and 
Lévy models. Section 4 will use phase-space analysis to show how the proposed 
model is able to generate spikes and how this mechanism can be related to market 
conditions and regimes, tight or smooth. Section 5 will consider periodic demand and 



it w
in 
pa
str
Se
wi
an
M

the
on
an
ex

 

will show how,
prices, in accor

arameters under
raints are violat
ection 7 will sh
ill show how to

nd a short analys
ore details on d

In this paper, 
e AESO (Alber

n this Canadian 
nd procedures d
xpressed in Cana

Fig. 1. Al
time in hours: a)

A hybrid SETARX

, according to th
rdance with phe
r which the mo
ed, and in what
ow how to prop

o calibrate the m
sis of results ob

discretizazion an

2. S

hourly price se
rta, Canada) Ele
market can be 

document [1], in
adian dollars C$

berta power marke
) system prices (SP

X model for spikes i

he model, dema
enomenology. S
odel supports s
t sense the mod
perly discretize

model in discrete
btained using rea
nd calibration ca

ome stylized

eries will be con
ectric System O
found in [43], i

n the short revi
$.  

et one week from M
Ps) in C$ – notice s

in tight electricity m

and is linked to
Section 6 will d
spikes, what ha
el is more gene

e the continuou
e time, includin
al market data. 
an be found in t

d features 

nsidered. All the
Operator websit
in the AESO of
ew of Ref. [23]

Mon Jan.08.2007 to
ome spike persiste

markets 

 seasonality and
iscuss the const

appens when th
eral than it appe
s time model. S

ng some calibra
Section 9 will c
the two Append

e data are obtai
te [2]. More inf
fficial operating
] and in [34]. P

o Sun Jan.14.2007, 
nce, b) demand in 

15

d spiking 
traints on 
hese con-
ars to be. 
Section 8 
ation tests 
conclude. 
dices. 

ned from 
formation 
g policies 
Prices are 

 

 
MWh 



C. LUCHERONI 

 

16

The effect of demand – assumed henceforth inelastic and exogenous – on prices 
can be appreciated in Fig. 1, where one week of hourly prices is shown in Fig. 1a. In 
Figure 1b, historical demand in MWh shows day/night seasonality. Demand is highest 
during daylight, with a peak after lunch time. In Figure 1, electricity prices show their 
specific behavior in relation to demand. Prices tend to stay close to a periodically 
varying baseline value most of the time but sometimes rapidly increase and as rapidly 
revert back to their original value, tracing the shape of a spike. Noticeably, prices only 
spike during daylight. More precisely, sometimes they spike, sometimes they do not, 
but when they spike they only do so at the same time as demand crests. Thus spikes 
appear only occasionally but in well determined time windows. Figures 1a, b together 
show that at a given level of demand a spike may or may not be generated. Some-
times, before reversion, high prices can persist for a while. All considered price series 
show at least two reversion time scales, the time scale where spikes are involved being 
the shortest, the longer scale being the baseline daily seasonality. Spikes, seasonality 
and complex mean reversion are the most striking stylized features of power prices. 
The phase-space of standard financial models is too simple to allow this behaviour. 

The economic origin of the spikes is not completely clear, but in the following 
a brief overview of theoretical (common knowledge) ideas is attempted, which relates 
the origin of the spikes to market tightness and behavioral factors. In a formal equilibrium 
approach, when demand is assumed to be inelastic, prices result from the clearing of the 
demand quantity qd by the quantity–price supply curve qs(p) – assumed to be constant 
over time – so that the relation qs(p) = qd sets the equilibrium price peq = 1

sq− (qd). Since 
power markets are auction pricing systems, this theoretical equilibrium approach 
makes sense. In a competitive environment, for a range of quantities, the supply side 
rationally proposes prices set at the marginal costs of production for a selection of 
increasingly expensive production technologies (the so-called “power stack” [13], i.e. 
the price-quantity curve 1).sq−  In aggregate, these costs also take into account produc-
tion capacity constraints [9, 3], which vary in time depending on on-line and reserve 
generation capacity. At high levels of demand, power markets can consequently be-
come tight because of capacity limits. Power markets transfer energy through 
a constraining power grid that at high demand can become congested [46], [38]. In the 
case of congestion, even in an abundance of capacity, power markets can then appear 
tight and spiky, depending on demand. At least two behavioral factors, one individual 
and one collective, can add volatility to this situation. Weron [44] finds that since elec-
tricity is an essential commodity for many market participants, in bilateral markets 
some demand side players individually and regularly overbid to secure themselves 
a sufficient and continuous supply of power. Moreover, since power markets are usu-
ally oligopolistic and not really competitive, anticipated tight phases can lead to col-
lective supply side collusive behavior during these phases [34], a condition that makes 
prices even more spiky and volatile. Unexpected weather conditions, like extreme 
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antispikes, i.e. downward spikes (this is also noted in [22]). Spikes and antispikes have 
various heights, but three main logprice levels can be identified, i.e. a cap and a floor 
price level and a baseline price in between. The cap price corresponds to an institu-
tional feature of the AESO market, where a maximum cap price cannot be exceeded. 
The floor price level is in principle zero (in contrast to other markets that permit nega-
tive prices). Figure 2c zooms in to show that spikes and antispikes seem to follow 
basically similar dynamics, but in the reverse direction and at suitably shifted times. 
Whereas spikes only appear during demand crests, antispikes only appear during de-
mand troughs, and, again, only occasionally. They are probably due to the delivery at 
low demand levels of forward contracts, struck long in advance at far lower prices. All 
considered, the overall dynamics seems then to switch occasionally from a normal 
regime to two other different and opposite spike regimes, a potentially tight and a po-
tentially relaxed regime. In the log plot of Fig. 2b, yearly baseline seasonality is also 
evident with a longer reversion time mixing with daily seasonality and spikes with 
a short reversion time. In this paper, only the normal and the potentially tight regimes 
will be modelled. Section 8 very briefly discusses how the model presented here can 
be elaborated further to include antispikes and the potentially relaxed regime as well. 

Modelling approaches that try to reproduce spiking and seasonality in path and 
distributional properties only, leaving aside considerations about the economic and 
technical origins of spiking, are called top-down approaches. Numerical interacting- 
-agent approaches that accurately take into account technical and institutional considera-
tions and the individuality of economic players [7] are called bottom-up approaches. 
Intermediate hybrid approaches try to relate microeconomic features to stylized features 
using a small set of equations. In this paper, a hybrid approach will be taken. 

3. Some models 

In continuous time, sophisticated models have been proposed for modelling spikes 
taking a top-down approach. For example, Cartea and Figueroa [8] set up a first order 
mean reverting process with a time-dependent mean reverting level to which they 
attach a homogeneous Poisson process that triggers spikes. Geman and Roncoroni [15] 
designed a similar process with an inhomogeneous Poisson process using sharp 
nonlinearity to revert rising spikes to the baseline level. More general Lévy processes 
can also be used for this purpose (consider for example the approach by Benth [6]). 
All these models are based on so-called “stochastic jumps”, i.e. price discontinuities 
on a continuous baseline background. Calibration of this kind of jump models in-
volves the detection of jumps by deseasonalization filtering and some spike filtering 
procedure. An uncommon example of a hybrid approach in continuous time not re-
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quiring jumps is an equilibrium model by Barlow [4], where spikes are obtained as 
equilibrium prices set by a static, nonlinear and increasingly expensive price-quantity 
curve 1.sq−  The limit of such a static supply approach is that the same levels of demand 
generate the same price levels, which is not what happens in Fig. 1, where at a given 
demand level, sometimes spikes occur and at other times they do not. 

In discrete time, jumps are more natural, each variation in price being potentially 
a jump, but in this case talking about jumps creates the problem of deciding which 
variation is a jump. In regime-switching state-space Markov models (RSMM) [25], 
which usually model daily prices, a set of S states (regimes) is defined. A different 
dynamics is associated with each state, and often these individual dynamics are auto-
regressions or simple draws from a given distribution. A higher level hidden dynamics 
gives the state transition from day to day. This hidden dynamics is usually written in 
terms of a transition matrix M. Such models were introduced in macroeconomics by 
Hamilton [17] (see also [18] for a review), using a time independent matrix M. Huis-
man et al. [21] adapted this approach to electricity price econometrics. Using a top-
down approach, and pointing out that models like [15] in which jumps and baseline 
dynamics belong to the same regime pose difficult problems of jump identification, 
they overcame this difficulty by assigning baseline and spiking activity to different 
regimes, and carefully crafted the matrix M to disentangle the mean reversion times to 
the baseline and of spikes. This approach was further developed in [12] and [11]. It is 
characterized by the use of a Bayesian technique to estimate the hidden level of the 
dynamics [18], which has the drawback of being a bit complicated, but has the advan-
tage of lending itself naturally to filtering, i.e. nowcasting the hidden state, and fore-
casting. During these developements, it was realized that M should be chosen to be 
time dependent, making it dependent on lagged prices or other exogenous time de-
pendent variables like residual capacity, demand or temperature [33], [5] [20]. Kana-
mura et al. [24] were able to embed this hidden variables approach in an equilibrium 
model, much in the spirit of the hybrid model by Barlow. Besides RSMM, in Ref. [32] 
Misiorek, Trueck and Weron describe another line of modelling in discrete time, re-
gime-switching threshold Markov models (RTMM), which use supporting regimes 
without hidden states (see also [45] and [22]). When the individual dynamics are auto-
regressions, RSMM and RTMM can be formally represented within a common frame. 
Consider a grid of equally spaced discrete times ti (i = 1, ..., N), the stochastic dynam-
ics of the price (or logprice) X(ti) and a function u = u(E, X) that can depend on an 
external unobservable integer-valued dynamics E(ti ) and on past realized values of 
X(ti) itself. This u is compared in value with a set {Tk | k ∈ K, T1 < T2 < ... < TK } of 
thresholds Tk. Depending on the result of this comparison, the system dynamics X(ti) is 
then associated to one of the dynamic regimes of the set {Rk | k ∈ K + 1}. If these re-
gimes are represented by exogenously driven autoregressions (ARX) for X(ti), where 
the exogenous driver is F(ti), the model is called threshold ARX (TARX). If u = u(E) de-
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pends only on the unobservable E, the model can be called an externally excited TARX 
model (EETARX), and belongs to the class RSMM of state-space models. In this case, 
a baseline ARX regime can be associated with some values of E, and jumps can also be 
chosen as draws from some auxiliary random variable associated with other values of E 
(i.e. using AR(0) dynamics). The dynamics of E can be written in terms of M. If u = u(X) 
depends only on X(ti), u is observable, the model is called a self-excited TARX (SE-
TARX) model [39], and belongs to the class RTMM of threshold models. Under EE-
TARX and in SETARX models, the thresholds can be assumed to be static or dynamic. 
Notice that M is not necessary in the case of RTMM but it can be derived if necessary, 
since it can be obtained from the form of the dynamics. A simple first order two-static-
threshold (K = 2) three-regime example of a SETARX model is 
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where xi and xi+1 belong to the support of the system stochastic variable X,  fi belongs 
to the support of F, ei are i.i.d. draws from a distribution P(e) and represent the sto-
chastic driver, R ∈ {R1, R2, R3} is the regime label, and the three φR and 0

Rφ are fixed 
within each regime R and are in general different from each other. The curly bracket is 
there to indicate to the reader that the multi-regime structure described by Eq. (1), 
despite its appearance, is a single SETAR(1)X equation. It could be written more 
compactly in terms of a regime-dependent function 

 ( ) ( ) [ ]
3

0

1
i iR R R i

i
G x x R Rφ φ

=

= + =∑ 1   (2) 

where 1[...] is the indicator function, equal to one when the condition in the square 
bracket is fulfilled and zero otherwise, as 

 ( )1 1i R i i ix G x f eσ+ += + +   (3) 

(for an example see Ref. [35]). This first order difference dynamics is globally nonlin-
ear, even though its dynamic equations are individually linear. A second order, i.e. 
SETAR(2)X, dynamics can be implemented either by increasing the order of the dif-
ference, or coupling a second first order equation in an auxiliary variable yi to Eq. (1), 
as for example in 

 ( )1 ,x
i R i ix G x y+ =  (4a)  

 ( )1 1,y
i R i i i iy G x y f eσ+ += + +  (4b) 
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(if yi  can be eliminated by substitution from the two equations, the order of the resulting 
equation in xi is raised). When explicitly written in terms of coupled equations, this 
model is actually a vector autoregression, or SETVARX. As for an AR(2)X model, in an 
appropriate parametric range this model can be mean reverting (i.e. asymptotically sta-
tionary) and can sustain oscillations even in the absence of exogenous drivers. Consider-
ing that standard vector threshold regressions use the same tresholds for both 

 and ,x y
R RG G a model with different x and y thresholds will be called nonstandard. In 

discrete time, less standard approaches to modelling electricity prices also exist, for ex-
ample statistical learning techniques like support vector regressions [36] or regression 
trees [16]. Yet, these techniques seem to be more effective for demand modelling than 
for price modelling [36]. Finally, notice that in the energy economics literature, RSMM 
models tend to be called Markov regime-switching models, and RTMM models are 
called threshold models, TAR models, or threshold regime-switching models [44]. 

In continuous time, where autoregressions become AR diffusions, one can set up 
regime-switching threshold vector diffusions with the same properties of their discrete 
time counterparts [26]. A threshold self-excited vector diffusion (i.e., a continuous 
time model) that can lead to spikes and baseline sinusoidal oscillations without using 
jumps will be discussed now. This model consists of two coupled threshold diffusions, 
and it is equivalent to a suitably chosen SETVAR(1)X (or SETAR(2)X, as appropri-
ate) in discrete time. Such a model also retains its continuous time properties in dis-
crete time. This means that, even for the discretized model, there is no need of filtering 
for spikes when the model is calibrated. This model is an adaptation of a model 
sketched in Ref. [30]. In what follows, its regime structure will be discussed in rela-
tion to the previous discussion of tight markets, and a suitable method of calibration 
for it will be developed and applied to market data. 

4. The McKean model: spikes as stochastic orbits 

In continuous time, a model developed in mathematical neurobiology by 
H.P. McKean [31], discussed in Ref. [10], can be very useful in modelling spikes and 
can easily be related to the SETVARX models. The McKean model is based on two 
coupled first order equations in the variables X(t) and Y(t) which, in Langevin formal-
ism, are given by 

 ( )Rx g x yε = −  (5a) 

 ( ) ( ) ( )by x y b f t s tγ σ ξ= − + − +  (5b) 
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In Equations 5, x and y belong to the support of X and Y, ξ(t) = dW
dt

 (where W(t) is 

a Wiener process) is the stochastic driver, γb and b are the parameters, ε > 0 is a struc-
tural constant that determines the time scale, σ (s) = 2s  is the volatility set by s > 0,  
f (t) is interpreted as the expected demand and σ (s)ξ(t) is the random component of 
electricity demand. f (t) is thus an exogenous driver, which can be zero or periodic. In 
Equation (5a), the two-threshold regime dependent function gR(x) is defined as 
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where βL, γ0, βR are parameters, DL > 0 and DR > 0 are the left (L) and right (R) thresh-
olds, and –DL < DR. A more compact form for gR(x), analogous to Eq. (3), is 

 ( ) ( ) [ ]
3

0

1
i iR R R i

i
g x A x A R R

=

= + =∑ 1   (7) 

where, for i = 1, 2, 3, 0and 
i iR RA A are parametric constants. In Equations (5), most of 

the parameters are subject to sign restrictions, i.e. γb > 0, γ0 > 0, βL > 0, βR > 0, and to 
further constraints like γ0 > γb. These constraints will be discussed in more detail in 
Section 6. Since the thresholds in the two equations, Eq. (5a) and Eq. (5b), are differ-
ent, the model is nonstandard. Differentiating Eq. (5a) with respect to time using the 
chain rule 

 ( )g g x x
x

∂=
∂

 (8) 

and substituting into Eq. (5b), allows one to eliminate y and rewrite the two Eqs. (5) as 
the single second order differential equation 

 ( ) ( ) ( ) ( ) ( )R
R b

gx x g x x b f t s t
x

ε ε γ σ ξ∂⎛ ⎞= − + − + + −⎜ ⎟∂⎝ ⎠
 (9) 
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For f = 0, these two curves can be seen in the phase-space plane displayed in 
Fig. 3 as a dashed and a dotted line, respectively. The dashed piecewise-straight line is 
the x nullcline that results from Eq. (12a), the dotted upward sloping line is the y null-
cline that results from Eq. (12b). For the moment, keep f = 0 and choose the parame-
ters of Eqs. (5) to be γb = βL = βR = γ 0 = 1, –DL = –1.5 and DR = 0.5, as in Fig. 3. Con-
sider Eq. (6) and look at the signs in front of x in each of the three regimes. Whereas 
the y nullcline is straight and has a constant positive slope of value γb = 1, the x null-
cline is segmented into three parts, which correspond to the regimes R = R1, R2, R3. Going 
from left to right, the x nullcline displays the slope of –1 in R1, a first kink due to the 
threshold T1, a slope of 1 in R2, a kink at the T2 threshold, a slope of –1 in R3. In this 
sense, the three vertical bands across the phase-space of Fig. 3 will be called regions I, 
II, III, since they correspond to the regimes R1, R2, R3. A phase-space point  
P = (x, y) is said to belong to the regime Ri when x takes a value in the i-th sector ac-
cording to the segmentation by the thresholds. For example, if x ∈[DR, ∞], then P ∈ R3. 
The two nullclines cross each other at point P* = {x*, y*}, where the condition ex-
pressed by taking Eq. (12a) and Eq. (12b) as a system, i.e. 0x y= = , holds. At the 
crossing point P* the dynamics is quiescent, since both time derivatives are 0. P* is 
a fixed point of the dynamics. In this paper, it will be assumed that the system parame-
ters are chosen in such a way that the system is dissipative and P* is unique and stable. 
P* is then always an attractor of the dynamics. When the nullclines cross each other in 
region I as in Fig. 3 (which is the typical McKean setting), P* has coordinates 

 
( )

( ) ( )

0
*

* *

L L L

L b

b

D D b fx f

y f x f b f

β γ
β γ

γ

+ + −= −
+

= + −
  (13) 

In this case, since P* is an attractor, dynamic trajectories starting close to P* will 
quickly end up in P* itself. For this reason region I will be called stable. The other two 
regions have different stability properties. Trajectories are also attracted by the 
x nullcline sector of region III (because of the nullcline’s locally negative slope) but 
differently from what happens in region I. Attracted trajectories are quickly forced to 
leave, since no attractor exists in region III. For this reason, region III will be called 
metastable. Region II will be called unstable, since when trajectories enter this region 
they must cross it without stopping in it. Of course, the terms unstable and metastable 
are used here in a descriptive and nontechnical way since, strictly speaking, there are 
no fixed points except P*. This phase-space structure is very asymmetric. 

When the stochastic driver ξ(t) is turned on ( f  = 0 still, but now σ ≠ 0), a typical 
phase-space trajectory {x(t), y(t)} is shown in Fig. 3 as a continuous orbiting line. The 
system spends most of its time close to where the two nullclines cross each other, the 
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point P* = P*( f = 0). At a certain random time, the noise ξ(t) kicks the system from 
region I to region II, where it cannot stop. Then the system moves on toward re-
gion III, where it can stay for a while. After having spent some time in region III, the 
system returns to region I. Notice that due to its two opposing trajectories through 
region II, the component x(t) of the process has described a spike, since it has sprang 
up and down from its baseline value x*. A large spike is thus a large stochastic orbit in 
phase-space that goes from region I to region III and back. A small spike is just 
a small stochastic orbit which does not reach DR. The order of magnitude of the spike 
height is T2 – T1. Spike persistence appears when, during the return to region I through 
region II, a kick of noise with the appropriate sign pushes the trajectory back into re-
gion III. Flights from region I to region II become more likely when the nullcline y is 
moved closer to the second threshold T2 (in Fig. 3, this is obtained by shifting the 
y nullcline in the direction of the arrows, for example changing the value of the pa-
rameter b). In this case, it is easier for the stochastic driver ξ(t) to push trajectories 
from region I through the threshold T1 into the unstable region II, and start a spike. In 
this model, spikes are not objects induced by some auxiliary process, but are endoge-
nous to the nonlinear dynamics itself, as opposed to what happens in the jump-
diffusion or state-space literature. The process x(t) can now be identified as a logprice 

 x(t) = log p(t) (14) 

In Figure 4a, a sample logprice process x(t) from Eq. (5) with a time span longer 
than that in Fig. 3 and the same parameter values is shown. Notice that the constant 
mean reversion level x*, to which the dynamics x(t) always spontaneously reverts 
after each spike, is below the threshold –DL (inside region I, the threshold –DL is 
indicated by a dash-dotted line). Also notice that the dynamics naturally incorporates 
two reversions, the first being the spike downward movement, the second being the 
AR(1)-like reversion of points that never leave region I and after a noise shock turn 
back directly toward x*. Figure 4b shows in which regime (I–III) the dynamics finds 
itself at each time. In Figure 4c, the corresponding price trajectory p = expx(t) is 
shown. Price spikes with different heights and widths are present, springing from 
a constant baseline mean reversion level. This process is similar to the continuous 
time jump processes discussed in Section 3, but without jumps, i.e. the McKean 
process is a continuous time continuous price process. The mean reversion mecha-
nism of the spikes is built into the equations themselves, since the McKean model 
incorporates a Hopf bifurcation point in its structure, which enables stochastic or-
bits, these occasional orbits being the spikes. To permit such spikes, of variable 
heights, it is very important that the diffusion is at least of second order. Notice that, 
by construction, the model cannot satisfy the cap price rule, while it obviously satis-
fies the floor price rule. The choice of the log transformation is arbitrary, and other 
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5. The McKean model and stochastically resonating spiking 

In the discussion in Section 4, the exogenous driver f (t) was considered for the 
moment to be equal to zero. When discussing the McKean dynamics of Eqs. (5), it 
was said that flights through region II (i.e. the spikes) are made more likely when the 
y nullcline of Eq. (12b) is moved closer to the second threshold T2 by changing the 
value of the parameter b. Another way to help the noise to cause spikes is obtained 
when the baseline f level from Eq. (5b) has a sinusoidal form, i.e. 

 ( ) 0 0sinf t B tω=  (15) 

In this case, f (t) has a shifting effect similar to that of b, but also moves the y null-
cline upward and downward in a periodic way. For small B0, the x* coordinate of the 
attractor P*( f ) in region I can be periodically close to the left threshold T1, but is never 
allowed to pass T1 into region II. Consequently, the system periodically becomes more 
reactive to noise. If the fixed point P*( f ) were allowed to pass from region I to re-
gion II, it would lose its stability, having changed its attraction properties. In this case, 
the dynamical system would have crossed a critical point Cp in the space of the pa-
rameters, a point that marks the location of a Hopf bifurcation. As discussed before, it 
is the very presence of this “external” (and never passed) critical point Cp that allows 
the coexistence of small oscillations and stochastically activated larger orbits (spikes). 
But the closer the system containing P*( f ) is to Cp, the easier spikes tend to form. The 
combination of forcing and noise can then be interpreted as an effect of the uncertain 
electricity demand, and the left threshold T1 as the soft border defining the potentially 
tightened market condition of the power system resulting from high demand, due to 
capacity constraints, grid congestion, or both. When noise is able to kick the system 
into region II, a spike can be fired as the trajectory tries to reach region III, but it is not 
necessarily fired. This feature is not present in the equilibrium model of Barlow. 
Moreover, in this way spike activity is mostly probable only during demand crests 
(daylight) and is suppressed during demand troughs (night time), an effect that in 
jump-diffusion models can be obtained at the price of using an inhomogeneous Pois-
son process that needs to be separately calibrated. Two different mean reversion scales 
are now present in the dynamics, one due to the fact that the day/night baseline of the 
x(t) dynamics (the part of the dynamics without spikes) follows quasi-linearly P*( f) 
= P*( f (t)) in its periodicity, the other due to the fact that the spike dynamics keeps on 
reverting to P*, wherever it is. The frequency of the exogenous driver can be set ac-
cordingly to the periodicity of the market, being the 24 hour seasonality most obvious 
for hourly data. If an exogenous driver of the type f (t) = B0sinω0t + B1sinω1t contains 
extra frequencies like ω1, time scales beyond the single-spike daylight scale can be 
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included and further mean reversion mechanisms can act. For example, spiking activ-
ity may be enhanced in specific high seasons (e.g. in winter, when Nordic provinces 
like Alberta use electric heating), while retaining the same baseline price level of other 
seasons. During the high season, the threshold T1 will find itself on average closer to 
the demand peaks, and spikes will be more frequent – yet retain the same peak-to-base 
structure. As a consequence of this mechanism, the McKean model is a threshold 
model for reasons deeper than that of the presence of thresholds in gR, since the critical 
point Cp is a threshold in itself, but with a different effect. The same combination of 
forcing, nonlinearity, noise and criticality was exploited as a spiking mechanism for 
electricity market prices in another model introduced in Ref. [27] and developed in 
Ref. [29] and Ref. [28], under the name of stochastically resonating spiking (SRS). 
A short, useful comment on the role of the time scale ε should now be made. When  
ε = 0, the second order threshold dynamics of Eq. (9) becomes the first order threshold 
dynamics 

 ( ) ( ) ( ) ( ) ( )R
R b

g x g x x b f t s t
x

γ σ ξ∂ = − + + − +
∂

 (16) 

with very different spiking properties. This means that ε is a stiff parameter that must 
take a positive value, not too close to zero. More information about the role of ε in 
Eqs. (5) (here tuned to the soft ε regime) can be found in Ref. [27], and a discussion 
about the possible uses of bifurcation theory for dynamic systems and Hopf critical 
points in seasonally and irregularly peaking commodity markets can be found in 
Ref. [29]. Ref. [28] describes how to calibrate the model introduced in Ref. [27]. 

An example of the effect of the SRS mechanism can be given by simulating the 
stochastic differential system from Eqs. (5). A typical trajectory of a forced McKean 
dynamics is shown in Fig. 5. The parameters used in Fig. 5 are almost the same as 
those used in Fig. 4 except for b = 1, DL = DR = 1, B0 = 1/2, ω0 = π/2 and the Euler 
discretization time step dt = 4/24 = 1/6. Again, the process x(t) is identified with the 
logprice, so that the price is exp(x). Figure 5a shows the simulated price trajectory, 
together with the sinusoidal predictable part of the demand in Fig. 5b. Each crest in 
demand represents daylight, each trough represents night time. This figure should be 
compared visually with the market data in Fig. 1. When demand pushes the system 
close to the left threshold –DL of region II (i.e. of the potentially tight spiking regime), 
indicated by a dash-dotted line, it can happen (but not necessarily) that a spike is fired. 
Only in this case can noise cause a spike to fire (the big arrow in Fig. 5a indicates one 
such event). When demand is at its trough, the probability that a spike is fired is 
strongly suppressed. Thus, if prices spike they do so only during daylight, and at 
a given level of demand a spike may or may not be generated. Moreover, even though 
the left threshold is crossed from left to right, in some cases the trajectory is forced 
back to region I very quickly without ever reaching the threshold of region III, indi-
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cated by a dotted line. In Figure 5a, such a bounce appears as a would-be spike with 
a small height, indicated by the small arrow in Fig. 5b. Spikes appear to have a struc-
ture and not as isolated points, even though the dynamics is now discrete with 
24 points per cycle. 

 

Fig. 5. Discrete McKean model for f + 0. Parameters: ε = 0.5, s = 0.4, Δt = 1/6, αL = αR = 1, 
βL = βR = 1, γ0 = 1, DL = 1, DR = 1, b = 1, γb = 1, B0 = 0.5, ω0 = π/2, t is in 6 hour units, 

i.e. one unit increment each 6 time steps (see text): a) price expx (t) dynamics, a spike is indicated  
by the big arrow, a would-be spike is indicated by the small arrow, dotted line – DR  
and dash-dotted line – DL, b) forcing f (t) = B0sin ω0t, the demand crest generating 
the corresponding spike is indicated by a big arrow, the demand crest generating  

the corresponding would-be spike is indicated by a small arrow 

The way in which ω0 is chosen requires some considerations, since the choice of 
ω0 has two main implications, one on the time step of the discretization and the other 
on the number of spikes per day. Using a simple approximation, suppose a set of val-
ues for the parameters is chosen with f = 0 and only then is f = B0sinω0t added. The 
chosen ω0 = 2π/T0 (T0 is the period) sets the periodicity time scale, since a full 
day/night cycle has to be as long as T0. To simulate a trajectory, the number of time 
steps per period has to be chosen. An accurate simulation of a trajectory resulting from 
a nonlinear stochastic equation might require a large number of steps Np per period to 
achieve a small dt, whereas the AESO market data series contains only 24 prices per 
period (one day). In this second case, Np = 24, so that dt would turn out to be quite 
large. Since in the present context the McKean model is being used to model the 
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econometrics of electricity markets, Np must be considered to be fixed. For a fixed Np, 
ω0 is linked to the time step Δt, because to have Np steps per period the relation 

 0 2πpN tω Δ =  (17) 

must hold. For fixed Np, Eq. (17) shows that ω0 is inversely proportional to Δt. Thus, 
an accurate simulation requires a large ω0, i.e. a small T0 = NpΔt. Since ω0 is chosen 
after the other parameters, the effect of ω0 on the dynamics can be singled out by 
varying ω0 itself. Under such a model, a spike is a stochastic orbit that requires some 
time to get back to P0, and this time Ts is fixed when the parameters are chosen with 
f  = 0. In the data, a spike starting in the morning lasts at maximum half a day. Thus, 
under the model, a spike must last at maximum Ts < T0/2 = π/ω0. This implies that, at 
pre-fixed Ts, to have credible spikes, ω0 must be bounded from above. This also limits 
the grid of the discretization (neither large ω0 nor very small time steps are allowed). 
As a rule of thumb, one spike per day may be a good modelling choice, and this would 
limit ω0 from below. This is clearly a resonance effect. Since the McKean model for  
f = 0 is a nonlinear oscillator, it has an intrinsic resonance frequency ωs for spiking. 
ω0 has to be tuned to ωs, which is difficult to find analytically, so that some experi-
mentation is needed. Notice that resonance effects also exist for standard linear sea-
sonal AR(q)X models (even though they are never discussed), but here nonlinearity 
makes the issue particularly important. These considerations explain why the time step 
chosen for the simulation of Fig. 5 is so much larger than the typical dt used in the simu-
lation of stochastic differential equations. The simulation parameters were first chosen 
with f = 0, then ω0 was chosen to be equal to π/2, in order to have one spike per period. 
Consequently, Np = 24 implied the choice Δt = 4/24 ≈ 0.17 and T0 = NpΔt = 2π/ω0 = 4. 
Having chosen T0/4 = 1 as the unit for the time axis (6 “hours”, i.e. one quarter of a 24 
hour period), the model was finally simulated for a time span of 30 days, i.e. for 24 × 30  
= 720 time steps. Very importantly, this kind of simulation indicates that even long-step 
discrete time versions of the model preserve the features of its continuous time version. 

Attaching a financial meaning to each specific parameter of Eq. (9) or Eq. (25) is 
not very easy, since nonlinearity mixes short term and long term reversions into one 
single mechanism. In any case, some of the model parameters are rather clearly related 
to the mean reversion velocities that the system supports, the parameters b and γb are 
linked to the probability of spiking, the quantity DL + DR is related to the height of the 
spike. Finally, notice that in the discussion of the data in Section 2, the regimes corre-
spond to the level of demand. Under this mathematical model, the demand f is exoge-
nous but unobservable, being just a part of the mechanism, and regimes correspond to 
observable logprice thresholds. Yet, this does not exclude the use of an observable 
exogenous f (t) to study the correlation of prices with external demand. The use of 
a substitute for the true demand has one further advantage in terms of economic inter-
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pretation, since it can put to the test a power market version of the efficient market 
hypothesis (EMH) – all the information useful in determining future prices is con-
tained in the past prices (and no knowledge of really exogenous variables is neces-
sary). From the discussions in [33], [5] and [20], in power markets the EMH should 
reveal itself to be most certainly wrong. Power markets are not fundamental markets. 

6. Constraints and generalization 

The SRS mechanism based on the McKean mechanism for spiking works only if 
the slopes of the nullclines have the appropriate signs and the critical point is never 
passed. This implies that the parameters are subject to constraints. Subject to sinusoi-
dal forcing, the y nullcline moves up and down in a band limited by the two extremes 
±B0 that f (t) can reach (its lowest position is indicated in Fig. 3 by the thinner dotted 
line). For a given choice of parameters, when x = –DL, the y nullcline yyn(x) attains its 
minimum at the value min

0( ) ( ) .yn L b Ly D y D b B− = − + − If the relation yb ≥ γ0 is assumed, 
a sufficient condition for the attractor point P* to remain in region I (so that the critical 
point is not passed) is that at x = –DL the y nullcline remains above the x nullcline. 
That is, min

0( ) ( ) .yn L xn L Ly D y D Dγ− ≥ − = − Combining all these constraints, the SRS 
mechanism works if 
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 (18) 

(which implicitly implies γb ≥ 0). It should be noted that if in the continuous time 
model given by Eq. (9) the parameters are not constrained, the model encompasses the 
harmonic damped forced oscillator, i.e. second order linear diffusion, as a special case. 
This occurs because, when γ0 < 0 and βL = βR = –γ0, gR(x) is equal to γ0x in all three 
regimes, which when substituted into Eq. (9) gives the linear oscillator equation 

 ( ) ( ) ( ) ( ) ( )
0 0 bx x x x b f t s tε γ ε γ γ σ ξ= − + − + + −   (19) 

For parameter values between the McKean spiking model and the harmonic oscil-
lator, i.e. when γ0 < 0, βL > 0, βR > 0 but βL ≠ –γ0 and βR ≠ –γ0, the model behaves like 
a quasi-linear mean reverting oscillator, since the x nullcline is almost straight, and the 
phase-space structure is now almost symmetric. Even this form can be useful because 
it incorporates threshold effects while not requiring the McKean mechanism to be at 
work. 
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Thus, not to lose generality, in continuous time it is better to consider the (con-
strained) McKean model as a restriction of the more general model given by Eq. (9) 
(or Eqs. (5)) whose parameters are not constrained. A second possible restriction of 
the model is the harmonic damped oscillator. A third useful restriction is the quasi-
linear (or weakly nonlinear) mean reverting model. 

7. Discretization 

When an econometric calibration method has to be implemented in the model 
given by Eqs. (5), a clear problem appears. The process X(t) can be directly estimated 
using the logarithm of price data, but it might not be immediately clear on what basis 
the auxiliary process Y(t) could be estimated. However, note that Eqs. (5) or Eq. (9) 
can be further (and trivially) represented by the system 

 x z=   (20a) 

 ( ) ( ) ( ) ( ) ( )R
R b

gz z g x x b f t s t
x

ε ε γ σ ξ∂⎛ ⎞= − + − + + −⎜ ⎟∂⎝ ⎠
 (20b) 

where z belongs to the support of a new auxiliary variable Z. In this case, the chain rule 
Eq. (8) is not necessary to go from Eqs. (20) to the second order Equation (9). Since 

 pz x
p

= =   (21) 

is clearly an instantaneous logreturn, after a discretization indexed by n with time step Δt 

 ( ) 1n nx xx t
t

+ −→
Δ

  (22) 

the variable z in Eq. (21) becomes the logreturn intensity variable 

 1n n
n

x xz
t

+ −=
Δ

 (23) 

and all the data used for a sample series ˆix can be used to build the auxiliary sample 
series ˆ .iz The Euler discrete time version of Eqs. (20) becomes 

 1n n
n

x x z
t

+ − =
Δ

 (24a) 
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 ( ) ( ) ( )( ) ( )1
1

n n R
n R n b n n

z z g sz g x x b f
t x t

ε σε γ η+
+

− ∂⎛ ⎞= − + − + + −⎜ ⎟Δ ∂⎝ ⎠ Δ
  (24b) 

where the ηn are i.i.d. variables with a N(0, 1) distribution, gR(x) is given by Eq. (6) 

and  Rg
x

∂
∂

 is given by Eq. (10). Direct use of the discretization formula of Eq. (22) in 

Eq. (9), or substitution of Eq. (24a) into Eq. (24b), give the Euler discrete time version 
of Eq. (9) 
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+ + ++− + −∂ −= −
∂ Δ ΔΔ

+ − + + −
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 (25) 

As briefly sketched in Appendix A, two other interesting discretizations (including 
the discretization of Eqs. (5)) are still possible but they will not be discussed any fur-
ther. In Appendix B, it will be shown that under self-consistent assumptions the un-
constrained calibration of Eq. (25) and Eqs. (24) (as opposed to unconstrained calibra-
tion of the discrete version of Eqs. (5)), is not sensitive to the value of ε. The discrete 
time version of the general process represented by Eq. (9) is then ready to be used in 
electricity finance either as the single second order autoregression (Eq. (25) 
(a SETARX model), or equivalently as the two coupled first order regressions 
(Eqs. (24)) (a SETVARX model). Both forms include three possible restrictions, or 
modalities. The simplest one is an AR(2)X (or a vector AR(1)X) model, equivalent to 
the harmonic oscillator. Another one is a quasi-linear TARX (or TVARX) model. 
A third modality is obtained when the parameters are subject to the constraints given 
in Eq. (18). This third, strongly nonlinear restriction supports spiking and is the dis-
crete time version of the McKean model. Since the discrete time version of the general 
unconstrained process of Eq. (9) encompasses such a rich phenomenology, it should 
be rewarded with a name. It will be called S-SETARX, i.e. spiking SETARX. It is 
interesting to notice that when Tong introduced threshold models in Ref. [40], he was 
interested mainly in their potential to support strongly nonlinear behavior (as widely 
discussed in his book [39]) but in the end only the milder and quasi-linear aspects of 
these models entered the mainstream econometric literature (mainly due to the work of 
Tsay who implicitly worked on standard models [41], [42]). This notwithstanding, 
since in the end the S-SETARX model is just a two-threshold SETARX (even a bit 
less flexible, because the model is nonstandard and the y nullcline is not even broken), 
it is rather strange that it has never been taken into consideration in electricity finance 
before. 
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8. Calibration 

Besides ε, fixed for the moment as a structural constant, and ω0, the S-SETARX 
model depends on the following set of six parameters 

 { } { }0 0 1 2 3 4 5 6, , , , , , , , , ,L R b b B ψΨ = β γ β γ ψ ψ ψ ψ ψ=  (26) 

plus σ, plus the two thresholds 

 { } ( )1 2, ,L RD D T TΘ = − =   (27) 

i.e. nine parameters in all. Some of these parameters can be subject to constraints like 
those in Eq. (18). The simplest way to calibrate a two-threshold SETAR model is to 
follow the approach of Ref. [19], using sequential loglikelihood L maximization. This 
procedure consists of 1) choosing an arbitrary pair of thresholds, 2) partitioning the 
data into regimes using the chosen thresholds, 3) inside each regime estimating the 
model’s parameters by loglikelihood maximization independently of the other re-
gimes, 4) collecting these estimates and using them to build a common estimate for 
the volatility by means of the residuals, and 5) finding some way to improve the esti-
mates of the pair of thresholds until a global minimum of the volatility (and thus 
a maximum of the loglikelihood L) is reached. At this minimum volatility, the maxi-
mum likelihood estimators of the model’s parameters and thresholds are obtained. As 
a SETAR system, two features are peculiar to the S-SETARX model. First, being 
a nonstandard model, each regime has a specific Eq. (5a) but Eq. (5b) is the same for 
all regimes. This case was not included in Ref. [19] and this complicates the estima-
tion process, since the three regimes cannot be estimated independently. Second, be-
cause of the intrinsic scarcity of spike data with respect to baseline data, the regime 
that contains spikes can lead to large estimation errors that are reflected globally in the 
estimate of σ, so that adaptive methods for sequentially estimating thresholds might be 
inefficient in comparison to simpler grid searches. In Appendix B, it is shown how 
calibration can be achieved in both constrained and unconstrained cases, and how the 
problem of regime coupling can be resolved. In the case of unconstrained calibration, 
if Ψ takes the form of the row vector ψ, it is possible to numerically build a matrix C 
and a row vector V such that an estimate of ψ is given by the inversion of 

′ ′= −Cψ εV  

where the apostrophe means transpose. 
Unconstrained calibration is the first kind of calibration that should be attempted, 

since it can explore all the modalities of the S-SETARX model. Depending on the 
outcome, the signs of the estimated parameters can give information on whether the 
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data can be best represented by a spiking system, or a harmonic oscillator (i.e. a sim-
ple AR(2)X), or a quasi-linear oscillator. Then, the constrained calibration described 
in Appendix B can be tried, to see whether imposing constraints can force the estimate 
to some local minimum (the system is nonlinear), to collect more information. 

Table 1. Calibration on synthetic data 

ˆ ˆ1, 1L RD D− = − =  

ˆ
Lβ  0γ̂  ˆ

Rβ  ˆbγ  b̂  0B̂  σ̂  
1.0454 1.0406 1.0458 1.0113 0.9970 0.4768 0.8934

 
The unconstrained calibration procedure described in Appendix B can be tested by 

generating a series of synthetic data with the same parameters as those used for Fig. 5 
(where σ = 0.8944), but with a length corresponding to one year (8759 values). Im-
plementation of the procedure for Np = 24, the external values ε = 0.5, ω0 = π/2 (and 
consequently Δt = 1/6) on a grid of values –DL ε [–1.8, –0.2] with step size 0.1 and  
DR ∈ [0.2, 1.8] with step size 0.1 (which includes (–1, 1)) leads to the pair of estimates 

ˆ( LD−  = –1, ˆ
RD = 1).  

 

Fig. 6. Calibration on synthetic data: a) volatility surface for (–DL, DR) pairs.  
The gray scale indicates the level of estimated volatility for each threshold pair (–DL, DR)  

considered, darker shadows correspond to lower values of volatility.  
The best estimate of (–DL, DR) corresponds to the surface minimum, 

b) autocorrelation function (ACF) of the residuals, c) Q–Q plot of the residuals 
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A plot of the volatility surface corresponding to the chosen range of threshold 
pairs is shown in Fig. 6a, where darker shadows correspond to lower estimates of 
volatility. The localization of the left threshold at ˆ

LD− is sharp, the localization of the 

right threshold ˆ
RD is smoother. Since DR is below the peak of the spikes, this signals 

that this method is not too sensitive to the position of the threshold defining spikes. 
This makes ˆ

RD an interesting possible data-driven estimate of a threshold to discrimi-
nate spikes from non-spikes. The estimated values of the other parameters are reported 
in Table 1. The estimated maximum loglikelihood is –19 420. Figure 5b illustrates the 
autocorrelation function (ACF) for the residuals of the series, which shows no residual 
autocorrelation. Figure 5c gives a normal Q–Q plot for the residuals. Since all the data 
lie very close to the diagonal line, the distribution is normal. A Jarque–Bera test of the 
null hypothesis that the sample of residuals comes from a normal distribution returns 
that normality is not rejected with a p-value of 0.5. The estimated mean of this normal 
distribution is μd = 10–15. The calibration procedure seems to work well. 

The logprice series of 8760 real data for the year between Apr. 7.2006 and Apr.  
7.2007 is shown in Fig. 2b. To estimate the parameters of model using these data, the 
fixed values of ε = 0.5, ω0 = π/2 (thus Δt = 1/6), and a grid with –DL ∈ [2.6, 4.4] with 
the step size 0.1 and DR ∈ [5, 6.6] with the step size 0.1 were chosen (previously, 
a preliminary search on a larger grid had been made). The pair of thresholds which 
minimize volatility and maximize the loglikelihood is (– ˆ

LD  = 4.1, ˆ
RD = 6.3), with an 

estimated optimizing phase shift index (see Appendix B) of  l̂φ = 11. A plot of the 
volatility surface corresponding to the chosen threshold pairs is shown in Fig. 7a. The 
estimates of the parameters are reported in Table 2.  

Table 2. Calibration using AESO market data (Apr. 7.2006–Apr. 7.2007) 

ˆˆ ˆ4.1, 6.3, 11L RD D lφ− = − = =  

ˆ
Lβ  0γ̂  ˆ

Rβ  ˆbγ  b̂  0B̂  σ̂  
3.5496 –4.0098 3.0303 0.2114 –16.6987 –3.5486 3.7803 

 
The estimated maximum loglikelihood is –31916. The ACF of the residuals is 

shown in Fig. 7b. Some correlation at daily lags of multiples of 24 hours remains. The 
Q–Q plot in Fig. 7c shows that the distribution of the residuals is not normal, espe-
cially in the tails. The Jarque–Bera test rejects normality. Figure 8 shows how the 
residuals are distributed over time with relation to the original time series. In Fig-
ure 8a, b prices and logprices are shown for a portion of the series where there is 
a high density of spikes. Calibration is at its best when errors at the rising front of 
a spike are low (and similarly when the spike drops down). If this is not the case, the 
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system dynamics is not reactive enough, i.e. one of the reversion times is not suffi-
ciently short. In the terminology of Fourier analysis, the system does not support fre-
quencies high enough to be accurate around sharp features of the signal. Small errors 
in periods in which only baseline activity is present indicate that, on the contrary, the 
system can follow smooth signals, and, in this case, it does not need ether reactivity or 
high frequencies. 

 

Fig. 7. Calibration on AESO market data (Apr. 7.2006–Apr. 7.2007):  
a) volatility surface for (–DL, DR) pairs. The gray scale indicates the level of estimated  

volatility for each threshold pair (–DL, DR) considered, darker shadows correspond  
to lower values of volatility. The best estimate of (–DL, DR) corresponds to the surface minimum, 

b) autocorrelation function (ACF) of the residuals, c) Q–Q plot of the residuals 

Figure 8c shows the estimates of the residuals based on the estimates of the parame-
ters in Eq. (B.10). Errors are rather large at the fronts of spikes, and smaller when there 
is just baseline activity, which is typical of AR(q) systems with low q (thus, with a small 
range of frequencies). This poor quality of fit can be explained by looking at the sign 
that the procedure finds for 0ˆ ,γ  a negative sign. This implies that the SETAR(2)X sys-
tem fits the data using the form of a quasi-linear oscillator, and not in the highly 
nonlinear spiky form resulting from a McKean model. Even though spikes are present 
in the data, it seems that the system finds a fit with smooth oscillations to be more 
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this level. This implies that the weight of the spike at crests is not balanced by the 
weight of the antispike at the appropriate time lag. The best solution that the calibra-
tion procedure finds to fit the data is to choose the most symmetric version of the 
model, i.e. its quasi-linear oscillator form. A way to overcome this problem of asym-
metry for the spiking McKean model would be to extend the McKean model by defin-
ing an antispike sector, adding a metastable and an unstable region at the left hand side 
of the left threshold. Such an extended model was the model sketched in Ref. [30], for 
which no calibration has been tried or developed. Since the model of Ref. [30] in-
cludes antispikes, an extension to that model of the calibration procedure presented 
here could be useful in understanding whether the SETAR(2)X and the McKean 
model fail in accurately explaining market data just because of a lack of an antispike 
sector. Such a developement is left to further work. Another development would be 
a comparison of calibrations obtained for a selection of different ω0, to investigate the 
importance of the resonance effects discussed in Section 5. Yet, as stated in Section 1, 
an accurate description of the econometrics of the AESO data is not the main purpose 
of this paper, which instead is a discussion of the interesting features and possibilities 
of the S-SETARX model.  

9. Conclusions 

The S-SETARX model is a discrete time nonlinear econometric model, born in 
continuous time, with a rich phenomenology, an intriguing dynamics, and encompass-
ing some stimulating mathematical subtleties. It has three main modalities, one of 
which heavily exploits its non-linearity and supports spikes in a very natural way. 
Being a threshold model, it can be used to analyze data sets where spikes are present 
and thresholds are suspected, and in this way it can be useful even if the spike generat-
ing mechanism hidden in the data is different from that supported by the model itself. 
In this paper, the model was discussed focussing attention on the case in which an 
exogenous sinusoidal driver is present, but, as discussed in Section 4, the same model 
could also be very useful without the sinusoidal demand term, for example when ana-
lyzing daily or monthly averaged data or data from spiky time series that do not de-
pend on seasonality. In conclusion, the S-SETARX model, endowed with 1) its micro-
economic interpretation of the mathematically defined normal and potentially tight 
regimes, 2) its extension of the meaning of the world “threshold” in modelling spikes 
(intended both as a kink in a nullcline and as a bifurcation point leading to stochastic 
orbits) and 3) its associated constrained and unconstrained calibration procedure, is 
certainly rich enough in phenomenology to be included in the set of techniques that 
can be used to model electricity prices. 
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Appendix A. Discretizations 

In continuous time, elimination of y from the McKean Eqs. (5), or elimination of 
z from Eqs. (20), gives the second order Eq. (9). Direct use of the discretization de-
scribed in Eq. (22) on the McKean Eqs. (5) gives the first order system 

 ( ) ( )1n n
n n

x x
g x y

t
ε + −

= −
Δ

 (A.1a) 

 ( ) ( )1n n n
b n n n

y y sx y b f t
t t

σ ηγ+ − = − + − +
Δ Δ

 (A.1b) 

Elimination of yn from Eqs. (A.1) gives the second order equation 

 

( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 1 1
2

2n n n n n n n

n
n b n n

x x x g x g x x x
t tt

sg x x b f t
t

ε ε

σ ηγ

+ + + +− + − −
= −

Δ ΔΔ

+ − + + −
Δ

 (A.2) 

which is not Eq. (25), the discretization of the second order Eq. (9), since in general 

 ( ) ( ) ( ) ( )1 1n n n n
n

g x g x x xg x
t x t

+ +− −∂≠
Δ ∂ Δ

 (A.3) 

because 

 ( ) ( ) ( )1

1

n n
n

n n

g x g xg x
x x x

+

+

−∂ ≠
∂ −

 (A.4) 

However, the continuous limit of Eq. (A.4) is Eq. (9). This could seem strange but 
it is due to the fact that, in continuous time, to go from Eqs. (5) to Eq. (9) the use of 
the chain rule 
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 ( )g g x x
x

∂=
∂

  

was made, whereas the chain rule was not involved when going from Eqs. (20) to 
Eq. (9), and the chain rule does not hold for arbitrary large Δt in discrete time, but only 
at the Δt → dt limit. Thus, Eq. (25) and its associate Eqs. (24) (which are called in this 
paper the S-SETARX model) are dynamic maps different from the maps of Eq. (A.2) 
and its associate Eqs. (A.1), with different dynamic properties at arbitrarily large time 
steps. All these four dynamic maps have the same continuous time limit, Eq. (9). 

Appendix B. Details of the calibration 

Calibration will be carried out on the {xn, zn} SETVARX system of Eqs. (24), 
Eq. (6) and Eq. (10). The likelihood for a sequence of N sample data can be written as 
the product 

 ( )
2

1
N

n

H p n n
=

= +∏   (B.1) 

where p(n + 1|n) is the conditional probability density of 1 1ˆ ˆ{ , }n nx z+ + given ˆ ˆ{ , },n nx z
where the initial marginal density p(1) is dropped for simplicity. p(n + 1|n) can be 
factorized into x and z components as p(n + 1|n) = px(n + 1|n)pz(n + 1|n), where 
px(n + 1|n) = 1, since Eq. (20a) contains no noise. The noise term σξ in Eq. (20b) has 
a Gaussian distribution N(0, σ 2), so that it is more convenient to work with the loga-
rithm of H, i.e. with the loglikelihood 

 ( )( )
2

0
2

1,
n

R
n

L L L n nσ Ω
=

= + +∑  (B.2) 

where 

 
2

0
1 2πln

2
NL

t
σ−= −

Δ
 (B.3) 

 22
tLσ σ

Δ= −  (B.4) 

and 

 ( ) ( ) [ ]
3

1

ˆ1, 1,
iR R n i

i
n n n n x RΩ Ω

=

+ = + ∈∑ 1  (B.5) 
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In Equation (B.5) 

 ( ) ( ) ( ) ( ) ( )1ˆ ˆ
ˆ ˆˆ1,

ˆ
i

i i

Rn n
R n R n b n n

n

gz z
n n z g x x b f t

t x
ε

Ω ε γ+ ∂− ⎛ ⎞
+ = − − − + + −⎜ ⎟Δ ∂⎝ ⎠

 (B.6) 

Because of the indicator function, at each n the coordinate xn of point Pn is exam-
ined, and Pn is ascribed to the appropriate regime Ri, so that the proper component 
gRi(x) of gR is selected. After defining 

 ( ) 1ˆ 1ˆ1, ; 1n
n n

zh h n n t z
t t
+ ⎛ ⎞= + Δ = + −⎜ ⎟Δ Δ⎝ ⎠

 (B.7) 

Equation (B.6) can be written as 

( ) ( ) ( ) ( ) 0 0ˆ ˆˆ1, 1, ; sin
ˆ

i

i i

R
R n R n b n n

n

g
n n h n n t z g x x b B t

x
Ω ε γ ω

∂
+ = + Δ − − + + −

∂
 (B.8) 

or, for 

 ( ) ( )0 1, 1, ;A n n h n n tε+ = + Δ  (B.9) 

in a form more explicitly linear in the system parameters Ψ as 

 ( ) ( ) ( )
6

0

1
1, 1,

i i

j
R R j

i
n n A n n A nΩ ψ

=

+ = + +∑   (B.10) 

Equation (B.10) defines the data matrix AR(n) (with 6 × 3 entries ( )parameter
regimeA n  

= ( ) ,
i

j
RA n  j = 1, ..., 6, i = 1, 2, 3) where each j is associated with one of the six pa-

rameters in Ψ, each i with one of the three regimes. In terms of the parameter labels of 
Eq. (6) 

 
( ) ( ) ( ) ( )( )

( )
1

0
0

0 0

ˆˆ1, 1,

ˆ sin
R L n L n L L

b n n

n n A n n z x D D

x b B t

β β γ

γ ω

Ω + = + − − − − + −

+ + −
  (B.11) 

 ( ) ( ) ( ) ( ) ( )
2

0
0 0 0 0ˆ ˆˆ1, 1, sinR n n b n nn n A n n z x x b B tγ γ γ ωΩ + = + − − + + −  (B.12) 
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( ) ( ) ( ) ( )( )

( )
3

0
0

0 0

ˆˆ1, 1,

ˆ sin
R R n R n R R

b n n

n n A n n z x D D

x b B t

β β γ

γ ω

Ω + = + − − − − − +

+ + −
 (B.13) 

 ( )

0 0 0

ˆˆ 0 0
ˆˆ

ˆˆ0 0
ˆ ˆ ˆ
1 1 1

sin sin sin

i

n n L

L n n R

n n Rn
R

n n n

n n n

z x D
D z x D

z x D
A n

x x x

t t tω ω ω

+ +⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥+ −

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − −⎢ ⎥⎣ ⎦

 (B.14) 

Unlike the approach developed in Ref. [19], in which each regime can be esti-
mated independently, here the three regimes are coupled by the fact that the y nullcline 
is the same in all three regimes. This is analytically evident from the form of last three 
rows of the data matrix in Eq. (B.14), which couple all the columns together. Since 
loglikelihood maximization becomes a constrained quadratic problem, using vector for-
malism can help to adapt the notation to a form more suitable to quadratic constrained 
optimization. Consider the row vectors ( ) ( )1 6

, ( , ..., )
i in i R RA n A n=A and 1 6 ).ψ ψ, ...,ψ = (  

If · denotes the scalar product, ⊗  the outer product, ′ the transpose and An0 = A0(n + 1, n), 
each squared 

iRΩ can be written as 

 
( )( ) ( ) ( )2 22

0 0

2 1 2
0

1, 2

1
2

iR n, n ,i n , n ,i

n , n ,i n ,i

n n A A

A K Κ

Ω ′ ′+ = + +

′ ′= + +

A ·ψ A ·ψ

ψ ψ ·ψ
 (B.15) 

where 

 1 2
, , , , ,0 ,2 , 2n i n i n i n i n n iK A′= ⊗ =Α A K A  (B.16) 

The McKean constraints from Eq. (18) are then written in the matrix form 

 3 0′ ≤K ψ  (B.17) 

where 

 3

0 0 1 1
0 1 0 1 0 0
1 0 0 0 0 0

0 0 1 0 0 0
0 1 0 0 0 0

L LD D− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

K  (B.18) 
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Equations (B.15) and (B.17) are in a standard and very compact form that can be 
directly used in quadratic constrained numerical optimization solvers. If constraints 
are not necessary, an analytical solution to the loglikelihood maximization is easy to 
derive and computationally much faster to use. Unconstrained maximization of 
Eq. (B.2) in the 6 parameters implies 6 necessary conditions 

 ( ) ( )
2

1, 1, 0, 1, ..., 6
N

R R
n j

n n n n jΩ Ω
ψ=

∂+ + = =
∂∑   (B.19) 

Equation (B.19) represents one 6 × 6 inhomogeneous algebraic system of six 
equations in the six unknown parameters, where the coefficients of each equation are 
expressed in terms of the elements of AR(n) and implicitly depend on the selection of 
the thresholds, Θ. For example, assume that N = 2 and that, for a given choice of 
thresholds, 2 3ˆ .x R∈ Then, in Eq. (B.2) the loglikelihood sum has only one term, the 
term for n = 2. Recalling Eq. (B.10), the first, j = 1, condition becomes 

 ( ) ( ) ( ) ( )( )( )3

3 3 3 3

6
1 1

0
11 1

1, 0R jR
R R R R j R

j
A n A n A n n A n

ΩΩΩ Ω ψ
ψ ψ =

∂∂ = = + + =
∂ ∂ ∑  (B.20) 

because the terms 
1

i

i

R
R

Ω
Ω

ψ
∂
∂

 with i ≠ 3 disappear due to the indicator functions. Since 

( )
i

j
RA n  and ( )0 1,A n n+  are numerical data, Eq. (B.20) defines the first row 

 
6

1 1

1
j j

j

C Vψ
=

= −∑  (B.21) 

of a nonhomogeneous matrix equation (i.e. a linear problem) in the ψj where the 
choice of thresholds defines the numerical value of 1

jC and V 1. Taking into considera-
tion a generic N and all js, in shorthand notation Eq. (B.21) becomes the first entry of 
the matrix equation 

 ′ ′= −Cψ εV   (B.22) 

where C and the row vector V have components 

 ( ) ( ) ( )
2 2

, ;
N N

l k l
k R R R

n n
C C l k n A n A n

= =

= =∑ ∑   (B.23a) 

 ( ) ( )
2

1, ;
N

l l
R

n
V h n n t A n

=

= + Δ∑  (B.23b) 
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where l, k = 1, ..., 6. Thus the estimate Ψ̂ is obtained as 

 1−′ ′= −ψ εC V  (B.24) 

Computationally, the coefficients j
kC  and V l are obtained in the following way. 

For each ,j
kC  at each n, find out which regime ˆnx belongs to, look up the appropriate 

column of the data matrix and substitute in the data. Then, sum up to N to find .j
kC  

Do the same for V j. Once the matrix C and the vector V have been computed, the 
linear system given by Eq. (B.22) can be inverted and solved to give the estimates 

0 0
ˆˆ ˆ ˆˆ ˆ, , , , , .L R b b Bβ γ β γ  Since these estimates are given by an inversion, scarcity of data 

for one regime affects the estimate for all the other regimes – a data set with many 
spikes generates a better estimate of the baseline regime than a data set with few 
spikes. Moreover, filtering the data for deseasonalization or spiking worsens these 
estimates. Notice that Eq. (B.22) is nonhomogeneous just because the parameter ε 
(which sets the time scale) is nonzero. If ε is considered to be a system parameter, 
uniqueness of solution is possible only when one of the other parameters is kept fixed 
(thus setting another scale). In the case f = B0sinω0tn, when Δt = (2π)/(24ω0) there are 
24 times tn per period T0. A multiple lφ of a phase shift 

 0

24
ωφΔ =  (B.25)  

can thus be added to the argument of the sine function as 

 ( )0 0sin nf B t lφω φ= + Δ  (B.26) 

where lφ = 0, ..., 23. To avoid an additional search for the optimizing ˆ ,lφ the easiest 
thing to do is to exploit the fact that the AESO database reports demand data as well 
as price data. Since f (t) models demand d(t), Eq. (B.26) can be preliminarily and nu-
merically synchronized with d(t), by choosing the best lφ . This can be carried out us-
ing power spectrum analysis or routines like finddelay in Matlab. In the case f = 0, it is 
more efficient to work directly with a smaller 5 × 3 data matrix, obtained from the 
matrix in Eq. (B.14) by removing the last row. 

Loglikelihood maximization with respect to the variance σ2 gives 

 ( )( )22

2
1,

1

N

R
n

t n n
N

σ Ω
=

Δ= +
− ∑   (B.27) 

When the ΩRs in the sum are re-computed using the estimates of the parameters, they 
become the estimates ˆ ,RΩ  and Eq. (B.27) gives the estimate 2σ̂ of the variance σ 2.  
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Equation (B.24) shows that the estimates of the parameters are linear in ε. Looking at 
the form of ( )1,

iR n nΩ + in Eq. (B.8), it follows that ( )ˆ 1,R n nΩ +  itself is linear in ε. 

Thus, Equation (B.27) implies that σ is linear in ε. Going back to Eq. (24b), it follows 
that ε cancels out in this equation. The same happens for Eq. (25). In other words, if 
the three mutually consistent assumptions are made that the noise is Gaussian and that 
the parameters and σ are linear in ε in the discrete time models of Eqs. (24) and 
Eq. (25) (and also in the continuous time models of Eqs. (20) and Eq. (9)), ε cancels 
out. This does not happen in the discretization of the original form of the McKean 
Eqs. (5) (nor in its discrete time form in Eqs. (A.1)). This consideration makes 
Eqs. (24) the best choice to model and calibrate electricity prices using a McKean 
mechanism. 

As stated in Section 8, the estimation of the parameter σ has to be repeated on  
a 2-dimensional grid in the DL, DR plane. The ˆ ˆ,L RD D  pair which corresponds to the 
minimum σ 2 gives the best estimate [19] and maximizes the loglikelihood. There are 
obvious bounds on the values of DL and DR, such as –DL < DR. Moreover, –DL must be 
greater or equal to the minimum value of ˆnx found in the data set, and DR must be less 
than or equal to the maximum ˆ .nx  On a suitably shaped (–DL, DR) domain, a grid or 
a Montecarlo selection of pairs can then be explored, and this approach lends itself to 
code parallelization for faster calibration. One situation when this method cannot be 
applied is when some of the regimes do not capture data points. Imagine, for example, 
that a given DL, DR pair, regime 3 contains no data points. In this case, the third col-
umn of the data matrix AR(n) never appears in matrix ,j

kC for any n. The third elements 
( )

1

3
RA n and ( )

2

3
RA n  of the remaining second and third column of AR(n) are zero by 

definition, so that the third column 3
jC ( j = 1, ..., 5) of j

kC is zero, leaving j
kC non- 

-invertible. Neither βR, nor any of the other parameters can be estimated. A way 
around this problem can be found by acknowledging the fact that in this case the un-
derlying SETARX model consists of only two regimes and one threshold, so that the 
third row of the data matrix AR(n) and the third component of the vector V j can be 
removed. This elimination produces a two regime problem that can now be estimated, 
the remaining two regimes still being coupled by the same y nullcline. The same hap-
pens when regime I contains no data points. 
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